
Flicker-free transition of display context across various stages from
bootloader to user-space

Date: 2025-05-14

Devarsh Thakkar (Texas Instruments)

1

About us: TI Processors and Open source

2

Introduction to the Speakers

Devarsh Thakkar, (MGTS) Software

Engineering Manager at Texas Instruments

Devarsh Thakkar works as an Embedded Linux developer at

Texas Instruments He has ~12 years of experience in software

development ranging from open source bootloaders to the

Linux kernel, middleware frameworks and applications His

expertise lies in Audio/Video related multimedia frameworks,

Linux media subsystems, Linux device drivers and applications

He has made contributions to open source projects such as U –

boot, Linux Kernel and Gstreamer and also presented in

international conferences.

3

Overview
• Problem statement

– Display screen flickers multiple times while system is booting

• Goals (Mainly the use-cases to be supported)
• Preserve bootloader splash with smooth transition to intermediate animation and to GUI

• Preserve bootloader splash with smooth transition to GUI

• Preserve boot animation with smooth transition to GUI

• Solution

– Preserve IP, power and clock-domain state

• Across bootloader stages

• From bootloader to Kernel

• During kernel bootup

• During kernel to OS transition

• It’s a generic problem

– Audio

– Boot KPIs

• Current Status

• Upstream Gaps 4

Problem Statement

5

FSBL BL
KERNEL

BOOTUP

DRM

FBDEV

Emulation

This Photo by Unknown Author is licensed under CC BY-SA

Display

server/use

rspace

DRM/KMS

display

driver

https://cs.wikipedia.org/wiki/Linux
https://creativecommons.org/licenses/by-sa/3.0/

Problems

6

• MEMORY: Display Framebuffer Memory

– At the next stage,

• Display framebuffer memory gets reset/re-used by some other driver

– New FB memory allocated in each phase

• Video related IP STATE: Display controller, display bridges, GPIOs, PWMs

– Power and clock domains get toggled

– IPs can get soft reset on each stage when corresponding drivers get probed

DDR

DISPC
PWM/GPIO

/I2C

DSI/DP

/HDMI

LVDS-to-

HDMI

Goals
• Enable smooth transition of display contexts while device is booting up

– UC #1: Preserve boot splash screen with smooth transition to intermediate display

context e.g. another logo, animation context (psplash) until OS boots up and have

smooth transition to OS GUI

– UC #2: Preserve boot splash screen setup by early bootloader until OS boots up and

have smooth transition to OS GUI

– UC #3: Preserve boot animation until OS boots up and have smooth transition to OS

GUI

• While at it, minimize memory foot-print and reduce kernel bootup time so display comes

up fast.

• Taking example of TI’s K3 DSS with OLDI based display as an example:

7

OLDITXDISPCDDR

UC #1 – With psplash animation

8

FSBL BL
KERNEL

BOOTUP

DRM/KMS

Display

driver

FBDEV

emulation

Display

server

This Photo by Unknown Author is licensed under CC BY-SA

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

https://cs.wikipedia.org/wiki/Linux
https://creativecommons.org/licenses/by-sa/3.0/

Across bootloader boot-stages

9

FSBL

A53 SPL

BL

U-BOOT

Proper
FSBL BL

This Photo by Unknown Author is licensed under CC BY-SA

https://cs.wikipedia.org/wiki/Linux
https://creativecommons.org/licenses/by-sa/3.0/

Across bootloader boot-stages
• Pass video bloblist across each

bootloader stage

– CONFIG_SPL_BLOBLIST=y

– CONFIG_BLOBLIST=y

• Leave the power domain on

– Pass

DM_FLAG_LEAVE_PD_ON

– Remove method does not

power off display power

domains

• More details covered at :

– Early_display_using_uboot_pr

esentation

– Early_display_using_Uboot_Vi

deo
10

Video-uclass.c

static int video_post_probe(struct udevice *dev)

if (xpl_phase() == PHASE_SPL && CONFIG_IS_ENABLED(BLOBLIST)) {

struct video_handoff *ho;

ho = bloblist_add(BLOBLISTT_U_BOOT_VIDEO, .);

ho->fb = gd->video_bottom;

/* Fill aligned size here as calculated in video_reserve() */

ho->size = gd->video_top - gd->video_bottom;

ho->xsize = priv->xsize;

ho->ysize = priv->ysize;

ho->line_length = priv->line_length;

ho->bpix = priv->bpix;

ho->format = priv->format;
}

tidss-drv.c
U_BOOT_DRIVER(tidss_drv) = {

….

….

#if CONFIG_IS_ENABLED(VIDEO_REMOVE)

.flags = DM_FLAG_OS_PREPARE,

#else

.flags = DM_FLAG_OS_PREPARE | DM_FLAG_LEAVE_PD_ON,
#endif

};

https://static.sched.com/hosted_files/osseu2023/5c/Early_Splash_Screen_using_Uboot_OSS2023_21sept.pdf?_gl=1*10xpsjz*_gcl_au*MjA2MTU4NDIwNS4xNzQ3MTE1NTEx*FPAU*MjA2MTU4NDIwNS4xNzQ3MTE1NTEx
https://www.youtube.com/watch?v=-uJ_mNUjYpM

While kernel is booting

11

A53 SPL
U-BOOT

Proper
Kernel starts

booting

A53 SPL
U-BOOT

Proper
Kernel starts

booting

This Photo by Unknown Author is licensed under CC BY-SA

https://cs.wikipedia.org/wiki/Linux
https://creativecommons.org/licenses/by-sa/3.0/

While Kernel is booting
• Reserve framebuffer memory area as a reserved-memory node

• Simple-framebuffer

– Helps display animation before display driver is probed

– Preserves clock and power domains while kernel is booting and display driver is not probed

• By default genpd provider driver marks all domains as unused during bootup, so kernel has no

knowledge about already powered-on peripherals.

– These domains can get disabled at any time.

• Driver core attaches the power-domain mentioned in DT

• Supports attaching to multiple power-domains too

– Re-uses framebuffer memory set up by bootloader

– Enabled by CONFIG_FB_SIMPLE=y and it creates /dev/fb0

– Psplash or fbdev console can use this as an early framebuffer

12

From bootloader to kernel – Using simple-fb

13

video-uclass.c

// base device-tree with simple-framebuffer node (Given by user)

chosen {

framebuffer0: framebuffer@0 {

compatible = "simple-framebuffer";

power-domains = <&k3_pds 186

TI_SCI_PD_EXCLUSIVE>;

clocks = <&k3_clks 186 6>,

<&dss0_vp1_clk>,

<&k3_clks 186 2>;

display = <&dss0>;

status = "disabled"; // U-boot sets this to enabled

using fdt API and adds FB region

};

//Automatically created by U-boot using fdt API

framebuffer: framebuffer@ff700000 {

reg = <0x00 0xff700000 0x00 0x008ca000>;

no-map;

}

};

// Enable simple-framebuffer and reserve FB

area using fdt APIs

int ft_board_setup(void

*blob, struct bd_info *bd)
{

fdt_simplefb_enable_and_

mem_rsv(blob);

fdt_add_fb_mem_rsv(blob);

}};

}};

While Kernel is booting

14

A53 SPL
U-BOOT

Proper
Kernel starts

booting

Simple-fb

/dev/fb0

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

Avoiding power-off on probe deferral

• What if we just reserve the bootloader splash

memory ?

• Kernel boots up but has no knowledge of

already powered-on peripherals

• Although display is in powered-on state it will

mark it’s power domain as unused

• While probing the driver framework automatically

takes reference to device-power domain

(powers-on) and on probe exit it powers off the

device if probe failed (deferred probe)

• Extra reference taken by simple-fb helps here

15

static int platform_probe(struct device

*_dev)

{

if (drv->probe) {

ret =

dev_pm_domain_attach(_dev, true);

ret = drv->probe(dev);

if (ret)

dev_pm_domain_detach(_dev,

true);

}

}

What about simple-drm?

• Simple-drm

– Similar to simplefb this preserves clock and power domains by taking an extra

reference.

– Simple-drm takes ownership of the bootloader buffer and sets it up to be used as drm

client

• Any drm based application can also use this to render an animation using /dev/dri/cardX

– Simple-drm also supports fbdev emulation which will use a separate buffer to map it to

/dev/fbX

• It allocates another buffer which is used as back buffer for fbdev emulation and bootloader

framebuffer contents need to be copied to this buffer to preserve the splash screen as

otherwise user will see a black screen.

• Disadvantages :

– Higher memory footprint as compared to simplefb if using /dev/fbX with fbdev

emulation.
16

After the display controller probes

17

A53 SPL
U-BOOT

Proper

Simple-fb

/dev/fb0
Display controller

driver probed

Display related IPs may get reset during probe

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

Avoid reset for video IPs

• Detect if display active on probe

• Keep power-domains and active clocks enabled

– So that on probe-deferral driver core does not

power-off

• Until new modeset request comes up, continue to

reuse bootloader splash context without re-initializing

display hardware

• On first atomic_commit callback, reset the display

controller so that display server can cleanly take

control of display IP

• Same thing needs to be done for all IPs in chain

• More details at :

– [PATCH 0/2] drm/tidss: Delay reset if we have a

splash-screen - Tomi Valkeinen 18

// Check if display controller is active

dispc_is_idle(struct dispc_device *dispc)

{

return REG_GET(dispc, DSS_SYSSTATUS, 9, 9);

}

//Check which all CRTC’s are active

bool enabled = VP_REG_GET(dispc, vp_idx,

DISPC_VP_CONTROL, 0, 0);

dispc->tidss->boot_enabled_vp_mask |=

BIT(vp_idx);

// * Keep the CRTC clk enabled */

ret =

clk_prepare_enable(dispc->vp_clk[vp_idx]);

// *Keep the display controller GENPD on*

if (dispc->tidss->boot_enabled_vp_mask) {

dev_dbg(dev,

"Bootloader splash-screen detected, leaving

DSS active.\n");

pm_runtime_get_noresume(dev);

https://lore.kernel.org/all/20250416-tidss-splash-v1-0-4ff396eb5008@ideasonboard.com/

After fbdev emulation starts

19

FSBL BL
KERNEL

BOOTUP

Drm/kms

fbdev

FBDEV

emulation

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

After fbdev emulation starts

20

• FBDEV emulation uses separate buffer for the atomic commit

• Display driver can implement the function to copy simplefb contents of

bootloader splash to fbdev buffer memory

– Copy is required since there is no direct way to map the bootloader memory to a drm

buffer struct and use it to pass to fbdev directly

– Export function pointer to copy simplefb contents to fbdev buffer

• FBDEV emulation driver calls this function during probe and before the modeset

happens.

• Splash buffer contents are displayed seamlessly until app updates new buffer

• Other option is to disable fbdev emulation altogether

• Can fbdev emulation directly use the bootloader supplied buffer ??

After fbdev emulation starts

21

FSBL BL
KERNEL

BOOTUP

Drm/kms

fbdev
FBDEV

emulation

Simplefb/

simpledr

m

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

Display

Server

Goals #2 – Preserve bootloader splash

22

FSBL BL
KERNEL

BOOTUP
DRM/KMS

FBDEV

emulation
Weston

This Photo by Unknown Author is licensed under CC BY-SA

https://cs.wikipedia.org/wiki/Linux
https://creativecommons.org/licenses/by-sa/3.0/

Power-domain toggle problem – genpd sync state
• Have to keep power and clock

domains on without using simple-fb

• Platform power domain driver

marks power domains as active

based on if device is already active

during bootup

• GenPD framework adds a special

flag called stay_on domains to

those domains and keeps them

enabled until sync_state call

happens

• ti_sci_pd_boot_state_rfc

• [PATCH 00/11] pmdomain: Add

generic ->sync_state() support to

genpd - Ulf Hansson 23

//GENPD provider driver

while (!of_parse_phandle_with_args(np, "power-domains",

"#power-domain-cells",

index, &args)) {

is_on = ti_sci_pm_pd_is_on(pd_provider, pd->idx);

pm_genpd_init(&pd->pd, NULL, !is_on);

}

int pm_genpd_init(struct generic_pm_domain *genpd,

struct dev_power_governor *gov, bool is_off)

{

genpd->status = is_off ? GENPD_STATE_OFF :

GENPD_STATE_ON;

genpd->stay_on = genpd_may_stay_on(!is_off);

}

https://lore.kernel.org/all/20241022-tisci-pd-boot-state-v1-1-849a6384131b@ideasonboard.com/
https://lore.kernel.org/all/20250417142513.312939-1-ulf.hansson@linaro.org/

Power-domain toggle problem – genpd sync state
• Sync state gets triggered when all PD

consumer drivers get probed successfully

• This can be triggered via sysfs too manually

after system is up

– echo –n 1 >

/sys/devices/platform/bus@f0000/44043000.s

ystem-controller/44043000.system-

controller:power-controller/state_synced

• In case sync state callback is not enabled,

there is a idle timeout after which it gets

triggered automatically and drops reference

for all probed drivers – This should serve as

backup

• More details at :Re: [PATCH 00/11]

pmdomain: Add generic ->sync_state()

support to genpd - Ulf Hansson 24

void of_genpd_sync_state(struct device *dev)

{

list_for_each_entry(genpd, &gpd_list,

gpd_list_node) {

if (genpd->provider == &np-

>fwnode) {

genpd_lock(genpd);

genpd->stay_on=false;

genpd_power_off(genpd, false, 0);

genpd_unlock(genpd); }

}

}

https://lore.kernel.org/all/CAPDyKFqEgJPn-e-FooG_3h=Eqfw511c9_b+ywPcrfao8_p=u+Q@mail.gmail.com/

Challenges with genpd_sync_state

• At boot-time the genpd provider driver needs to query each of the peripherals to

know their power-state one-by-one

• The power-domains are generally managed by a separate entity possibly on a

remote core running a separate firmware and linux needs to query via IPC

– This adds to increase in boot-time (in several milliseconds)

• POSSIBLE SOLUTION 1:

– [TI SPECIFIC] Get combined status of all power-domains using a new TISCI API

– [Generic] Get combined status of all power-domains using a new SCMI API

• POSSIBLE SOLUTION 2:

– Separate dt-flag to specify which of the peripherals need to be queried ??:

• For e.g. we have always-enabled flag, similarly there could be boot-enabled flag.

25

Generic problem….

• Early audio tone set by bootloader, that need to be continued to play until tone

completes while system is booting up

– Power, clock and IP states for all devices in pipeline need to be preserved

– Genpd sync state helps here too….

• Boot time optimizations

– Skip initialization of already initialized IPs until it is really required to re-initialize saves

boot times. 26

FSBL BL
KERNEL

BOOTUP

Sound

driver
Weston

Goals #3 – With remote core animation

27

FSBL

(starts remote

core)
BL

KERNEL

BOOTUP
DRM/KMS Weston

Cooluser129, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

Goals #3 – With remote core animation

28

• MCU core driving a boot animation context and controlling the display

– MCU cores generally boot earlier in the system and have interrupts support so can render animations

• We protect the MCU memory context using reserved memory region similar to what was done earlier

• Disable the FBDEV emulation

• Smooth hand-off

– Linux needs to specify MCU core that it is taking control of display

– MCU core needs to relinquish the display control and do proper cleanup and send an ACK

– IPC mechanism – No standard API

– Linux display driver kicks a mailbox which generates an interrupt to remote core and waits for a

signal from remote core

– Remote core does the cleanup and signals to Linux again using a mailbox interrupt.

– Linux takes control of the display allowing modeset from weston

RTOS

(MCU)

Linux

(A53)

Open challenges/Gaps
• No direct way to free bootloader splash reserved region and give it back to kernel.

reserved-memory {

reg = <0xFF000000 0xC00>

}

• Small flicker seen when Weston starts up

– Weston creates a buffer and does a modeset with it without filling the buffer beforehand thus causing a

blank screen ???

• Copy needed for preserving splash with FBDEV Emulation enabled

– In case we just want to preserve bootloader splash until GUI comes up, there is no direct way to map the

bootloader buffer into a drm framebuffer struct and pass it to fbdev directly.

– As a workaround, copying the bootloader splash buffer to fbdev fb before doing atomic commit.

• Genpd sync state API does not support per device sync state calls to disable the stay-on power domain

reference as soon as corresponding driver gets probed

– Some discussion to extend fwdevlink API : Re: [PATCH 00/11] pmdomain: Add generic ->sync_state()

support to genpd - Ulf Hansson

• No standard API for remote-core to Linux smooth hand-off

https://lore.kernel.org/all/CAPDyKFqEgJPn-e-FooG_3h=Eqfw511c9_b+ywPcrfao8_p=u+Q@mail.gmail.com/

References
• Kernel Recipes 2015 - Introduction to Kernel Power Management - by Kevin Hilman

• Kernel Recipes 2017 - Overview of Generic PM Domains (genpd) - Kevin Hilman

• https://www.youtube.com/watch?v=-uJ_mNUjYpM

• https://www.youtube.com/watch?v=UvFG76qM6co&t=1910s

• [PATCH 00/11] pmdomain: Add generic ->sync_state() support to genpd - Ulf Hansson

• [PATCH 0/2] drm/tidss: Delay reset if we have a splash-screen - Tomi Valkeinen

https://www.youtube.com/watch?v=juJJZORgVwI
https://www.youtube.com/watch?v=SctfvoskABM
https://www.youtube.com/watch?v=-uJ_mNUjYpM
https://www.youtube.com/watch?v=UvFG76qM6co&t=1910s
https://lore.kernel.org/all/20250417142513.312939-1-ulf.hansson@linaro.org/
https://lore.kernel.org/all/20250416-tidss-splash-v1-0-4ff396eb5008@ideasonboard.com/

Credits and Acknowledgement

• Texas Instruments Inc.

• Tomi Valkeinen (IdeasOnBoard oy) for reviewing the slides

• Embedded Recipes 2025

31

Q&A

• Contact Information:

– Devarsh Thakkar devarsht@ti.com

– @devarsht:matrix.org

• Also on IRC @ libera.chat #linux-ti

32

Learn more about TI products

‒ https://www.ti.com/linux

‒ https://www.ti.com/processors

‒ https://www.ti.com/edgeai

mailto:devarsht@ti.com
https://www.ti.com/microcontrollers-mcus-processors/overview.html
https://www.ti.com/processors
https://www.ti.com/edgeai

