Functional Safety and
Linux

Maxime Ripard

Senior Principal Software Engineer

The Automotive Software
Revolution

The Automotive Software Revolution

A Carin the 80s

» No ABS, no Electronic Stability Program

(ESP), no active suspension

» Thermal Engine, no injection, no turbo,

60bhp on a good day.
» No Airbags

» No Advanced Driver Assistance Systems
(ADAS)

» No In-Vehicle Infotainment (IVI) (radio and

cassette player in option)

» Basically no software

Source:
caradisiac fr

The Automotive Software Revolution

A Car Now (Allegedly)

» Hybrid or EV

» ADAS: ESP lane keeping, adaptive cruise
control, park assist, autonomous driving, etc.

» Airbags, Emergency Braking, etc.
» Can run Doom (or navigation, whatever)

» Software is basically everywhere

Source:
cadence.com

The Automotive Software Revolution

(Mixed) Ciriticality

» Not all features are equally critical

» Some are life-critical (braking), some are just about comfort (radio)

> Industry shift from multiple processing components to a central one
COVID Chip Shortages
User now expects the system to be updated regularly
Margins!

» That component will have to handle various criticality levels

ISO 26262
Functional Safety For
Road vehicles

ISO-26262

Enter ISO 26262

Ratified in 2011, revised in 2018
Apply to all road vehicles but mopeds
Considered an industry standard, but not mandatory

Only deals with functional safety, ie. making sure that electronics

behaves as it should
Does so by introducing risk levels and associated requirements

Classification based on the severity of the consequences of a defect,
the probability of it occurring, and the probability of the driver or a

passenger mitigating it.

ISO-26262

Automotive Safety Integrity Levels (ASIL) Criterias

> Severity (50 to S3)

The severity of injury a defect could cause, from no injuries (SO)

to life-threatening or fatal injuries (S3)
» Exposure (EO to E4)

The expected frequency of an injury, from incredibly unlikely
(EO) to high (E4)

» Controllability (CO to C3)

The likelihood of the driver preventing the injury from

controllable (CO) to difficult to control or uncontrollable (C3)

ISO-26262

ASIL

» ASIL-D: Potentially Fatal (S3), High Probability of Injury (E4),
Uncontrollable (C3)

» Every reduction of any criteria brings the level down by one, down to
ASIL-A

> Below ASIL-A is Quality Managed (QM)

» QM means that all risks are tolerable from a safety perspective.

Standard development practices are sufficient.

ISO-26262

ASIL (cont.)

ASIL-D: Total loss of braking

ASIL-C: Cruise Control, Loss of rear braking
ASIL-B: Head Lights, Brake Lights

ASIL-A: Tail Lights

QM: The Weather widget on the dashboard

ASIL-C and -D highly recommend formal methods, and require

verification and validation.

Anything below is less constrained

n

ISO-26262

Freedom From Interference (FFI)

The "absence of cascading failures between components that could

lead to the violation of [some] safety requirement.”
Spatial Interference: one task affects the memory of another
Temporal Interference: one task affects the execution of another

Resource Interference: one task affects a resource shared with

another task, or its access to it

WHEN YOU REALIZE FFi

r
ey

@ |
T GOOD 05 DESIGN

B

ISO 26262
Implementation

ISO-26262 Implementation

>

>

General architectures

The FFI concept falls nicely into the age-old concept of CPU and

memory isolation

Different takes onit:
Discrete Physical Devices
Heterogeneous Systems
VMs
Containers

Process sandboxing

ISO-26262 Implementation

Discrete Devices

ASIL-B QM ASIL-D

App1 App 2 App 3

Hardware Hardware Hardware

sig.centos.org/automotive

ISO-26262 Implementation

sig.centos.org/automotive

VMs

VM VM
ASIL-B QM

App1 App 2

VM
ASIL-D

App 3

Hypervisor

Hardware

ISO-26262 Implementation

Doing it with Linux?

Temporal Interference?
Scheduler, PREEMPT_RT, cgroup, etc.
Spatial Interference?
Process Address Space, cgroup, containers, etc.
Resource Interference?
Partitioning, QoS, Arbitration, etc.
Plus usual issues for embedded devices

Software updates, secure boot, boot time, etc.

ISO-26262 Implementation

Source:

Doing it right

HoOoedE
BHC 200
CLETRION
" ‘;".“.i‘,l -

C L A . Y

Safety Application
(ASIL-B)

Telltales

Safety Container
(ASIL-B)

Automatic

Braking

-

QM Partition Traditional
Application
.g (J g Container

QM Subcontainer

QM Application

Media Player

Virtual Machine

Android Auto

o

Podman

Systemd

sig.centos.org/automotive

Podman

High Performance Compute

Systemd

Virtual
Machine

ONE DOES NOT SIMPLY

Y

CLAIM THEY ARE ASIL-B

20

ISO-26262 Implementation

Getting Certified

The certification is made by an authority
Designing a robust system is only the first step

You also need to show the authority that the design is indeed robust,

doesn’t have any gap, is reviewed, tested, documented, etc.

The certification attestation is then published for a given version

21

ISO-26262 Implementation

Missing Pieces

> There's still some parts of upstream Linux that don't provide FFI
Userspace Buffer Allocations APls
GPU scheduling constraints
Clock Framework tree rate changes
» Missing/incomplete features
OpenGL / Vulkan SC
Fault-Tolerant V4L.2
Virtualized everything

Being able to still display something when the compositor crashed

Questions?

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

x.com/RedHat

